Postagens

Mostrando postagens com o rótulo Textual Inversion

Ataques de Envenenamento em Modelos de Difusão: Análise e Defesa com Safe-Zone Training

Ataques de envenenamento de dados representam um desafio significativo para a robustez de modelos de difusão (DMs), especialmente em técnicas de personalização amplamente utilizadas como a Textual Inversion (TI). Uma pesquisa recente, intitulada "When and Where do Data Poisons Attack Textual Inversion?", realizada por Jeremy Styborski, Mingzhi Lyu, Jiayou Lu, Nupur Kapur e Adams Kong, aborda sistematicamente quando e onde esses ataques de envenenamento impactam a Textual Inversion, propondo uma nova defesa. O trabalho foi aceito para apresentação na ICCV. Os autores introduzem os "Semantic Sensitivity Maps", um método inovador para visualizar a influência do envenenamento em embeddings de texto. Através desta técnica, eles conseguem identificar e verificar experimentalmente que os modelos de difusão exibem um comportamento de aprendizado não uniforme ao longo dos passos de tempo, com foco em amostras de ruído mais baixo. Os ataques de envenenamento herdam esse vi...