Postagens

Mostrando postagens com o rótulo Machine Learning

Nova Técnica de Poda Ortogonal Acelera 'Esquecimento' em Redes Neurais

A necessidade de remover seletivamente o conhecimento de classes específicas em redes neurais pré-treinadas, impulsionada por regulamentações de privacidade como a GDPR e a LGPD no Brasil, apresenta um desafio significativo no campo de machine unlearning. Métodos existentes frequentemente enfrentam um dilema entre a velocidade do processo de "esquecimento" e a preservação da acurácia preditiva em dados não relacionados à classe removida, resultando em alto custo computacional ou degradação do desempenho. Um novo artigo disponível no repositório arXiv, intitulado "Orthogonal Soft Pruning for Efficient Class Unlearning" (arXiv:2506.19891), propõe uma solução inovadora para este problema. Pesquisadores desenvolveram um framework de poda suave (soft pruning) baseado em regularização ortogonal de kernels convolucionais para alcançar um esquecimento rápido e preciso. O método proposto opera impondo restrições de ortogonalidade durante o treinamento. Isso ajuda a des...

Novo Ataque com IA Expõe Vulnerabilidade em Detecção de Fraudes em Seguros de Saúde

A detecção de fraudes em sinistros de seguros representa um avanço crucial nos serviços de seguros modernos, proporcionando monitoramento inteligente e digitalizado para aprimorar a gestão e prevenir atividades fraudulentas. Essa capacidade é fundamental para garantir a segurança e a eficiência dos sistemas de seguros. Atualmente, algoritmos de inteligência artificial (IA) e aprendizado de máquina (ML) demonstram forte desempenho na identificação de sinistros fraudulentos. No entanto, a ausência de mecanismos de defesa padronizados torna os sistemas atuais suscetíveis a ameaças adversárias emergentes. Nesse contexto, uma pesquisa recente propõe um método de ataque baseado em Redes Generativas Adversariais (GANs) para realizar ataques adversários em sistemas de detecção de fraudes. Os resultados da pesquisa indicam que um atacante, mesmo sem conhecimento dos dados de treinamento ou dos detalhes internos do modelo de detecção, pode gerar casos fraudulentos que são classificados com...

Aprendizagem Incremental Multimodal com Modelos Pré-Treinados e Fusão Adaptativa

Um recente artigo disponível no repositório arXiv, intitulado "Leveraging Pre-Trained Models for Multimodal Class-Incremental Learning under Adaptive Fusion" (arXiv:2506.09999), apresenta um novo método para a Aprendizagem Incremental de Classes Multimodais (MCIL). Ao contrário das abordagens tradicionais que frequentemente se limitam às modalidades de visão e texto, este trabalho explora a MCIL abrangendo visão, áudio e texto simultaneamente. O principal desafio abordado é a integração eficaz de informações complementares dessas diferentes modalidades, enquanto se mitiga o problema do esquecimento catastrófico, comum em cenários de aprendizagem incremental. Para superar essas dificuldades, os autores propõem um método MCIL inovador baseado no uso de modelos multimodais pré-treinados. A arquitetura proposta inclui vários componentes-chave. Primeiramente, um Extrator de Características Incremental Multimodal (MIFE), baseado na estrutura Mixture-of-Experts (MoE), é introduzi...

Modelagem de Perda de Transmissão de Infra-som com Deep Learning

Um novo estudo propõe a aplicação de métodos de deep learning para aprimorar a modelagem da perda de transmissão (TL) de infra-som na atmosfera média. Essa modelagem é crucial para avaliar a eficácia da rede global do Sistema Internacional de Monitoramento (IMS) de infra-som. Atualmente, ferramentas de propagação como o método da equação parabólica (PE) permitem uma modelagem detalhada das perdas de transmissão. No entanto, o alto custo computacional do método PE limita sua aplicação na exploração de um vasto espaço de parâmetros, essencial para operações de monitoramento. Uma abordagem anterior, explorada por Brissaud et al. em 2023, utilizou redes neurais convolucionais treinadas com campos de onda simulados regionalmente (< 1000 km da fonte) para prever perdas de transmissão de forma mais rápida. Contudo, essa metodologia enfrentou desafios, especialmente em altas frequências e sob condições de vento iniciais desfavoráveis, além de questões de causalidade onde ventos distantes...

IA e Topologia Preveem Ratings de Crédito Bancário com Nova Rede Neural

Um estudo recente explorou a aplicação de técnicas avançadas de inteligência artificial e análise topológica para aprimorar a previsão de ratings de crédito bancário. O artigo, intitulado "Prediction of Bank Credit Ratings using Heterogeneous Topological Graph Neural Networks" (arXiv:2506.06293), propõe um novo modelo chamado Heterogeneous Topological Graph Neural Network (HTGNN) para enfrentar os desafios inerentes à previsão precisa e oportuna dessas classificações cruciais para a estabilidade econômica. Agências como Standard & Poor's e Moody's fornecem ratings de crédito que influenciam significativamente a tomada de decisões por diversas partes interessadas no mercado financeiro. No entanto, a aplicação direta de Redes Neurais Gráficas (GNNs), que são eficazes na alavancagem de informações de rede, é frequentemente complicada pela indisponibilidade de um grafo completo de conexões interbancárias, muitas vezes devido a preocupações com privacidade. Para ...

Otimização de Modelos de Machine Learning: Quantização Pós-Treinamento e Além

A área de Machine Learning tem presenciado um avanço significativo impulsionado por modelos cada vez maiores e mais complexos, capazes de realizar tarefas sofisticadas. No entanto, o tamanho e a complexidade desses modelos frequentemente resultam em altos custos computacionais e de memória, dificultando sua implantação em dispositivos com recursos limitados ou em larga escala. Para contornar esses desafios, pesquisadores e engenheiros exploram diversas técnicas de otimização de modelos. Uma abordagem proeminente é a Quantização Pós-Treinamento (PTQ - Post-Training Quantization). Essa técnica consiste em converter um modelo de machine learning já treinado, que geralmente utiliza representações de ponto flutuante de alta precisão (como FP32), para uma representação de menor precisão, como inteiros de 8 bits (INT8), sem a necessidade de retreinar o modelo do zero. O principal benefício da PTQ é a redução significativa no tamanho do modelo e no custo computacional durante a inferência, ...

Nova Abordagem Data-Driven Explica Deepfakes de Áudio

Uma nova pesquisa aborda o desafio de explicar por que modelos de detecção identificam áudios como falsos (deepfakes). Avaliar técnicas de explicabilidade, como SHAP e LRP, no contexto da detecção de deepfake de áudio é difícil devido à falta de anotações de verdade fundamental claras. Mesmo quando a verdade fundamental está disponível, esses métodos tradicionais frequentemente falham em fornecer explicações precisas. Para superar essa limitação, pesquisadores propuseram uma abordagem inovadora baseada em dados para identificar regiões com artefatos em áudios deepfake. O método utiliza pares de áudios reais e "vocoded" (sintetizados por vocoder), considerando a diferença em sua representação tempo-frequência como a verdade fundamental para a explicação. Essa representação é tipicamente um espectrograma log-magnitude, e a diferença entre o áudio falso (spoof) e o áudio real (bona fide) correspondente é usada para destacar as regiões de artefato. Para obter regiões significa...