Postagens

Mostrando postagens com o rótulo Benchmarks

Avaliando o Raciocínio Financeiro em IA: Um Novo Benchmark Multimodal e Abordagem de Aprendizagem por Erro

Um artigo recente disponível no arquivo de pré-publicações arXiv apresenta um novo benchmark e uma abordagem inovadora para compreender e aprimorar as capacidades de raciocínio financeiro em modelos de Inteligência Artificial (IA), com foco particular em modelos de linguagem grande (LLMs) e modelos multimodais grandes (MLLMs). O trabalho, intitulado "Understanding Financial Reasoning in AI: A Multimodal Benchmark and Error Learning Approach", foi escrito por Shuangyan Deng, Haizhou Peng, Jiachen Xu, Chunhou Liu, Ciprian Doru Giurcuaneanu e Jiamou Liu. A pesquisa introduz o benchmark FinMR (Financial Multimodal Reasoning), projetado para avaliar quão bem os modelos de IA raciocinam em contextos financeiros específicos. Reconhecendo que o raciocínio financeiro eficaz exige a compreensão de informações textuais e a interpretação de dados visuais complexos, como gráficos, tabelas e tendências, o FinMR integra ambas as modalidades para refletir desafios analíticos autênticos do...