Postagens

Mostrando postagens com o rótulo Ângulo de Chegada

Localização Multiuso com Deep Learning e Segmentação Semântica por Ângulo de Chegada

Um artigo recente publicado no arXiv propõe uma nova abordagem baseada em deep learning para a localização de múltiplas fontes utilizando exclusivamente medições de ângulo de chegada (AoA - Angle of Arrival). A pesquisa aborda um cenário dinâmico onde a plataforma receptora está em movimento, enquanto as fontes são consideradas estacionárias. Embora existam diversos métodos para localização de fonte única, o estudo destaca uma lacuna significativa na pesquisa focada em localização de múltiplas fontes em ambientes dinâmicos. Para preencher essa lacuna, os autores propõem uma estrutura baseada em deep learning que emprega modelos de segmentação semântica para realizar a localização multi-fonte. Especificamente, são utilizados os modelos UNet e UNet++ como base, que processam imagens de entrada codificando as posições da plataforma juntamente com as linhas de localização de direção correspondentes em cada posição. Ao analisar as interseções dessas linhas, os modelos são capazes de iden...